Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems.
نویسندگان
چکیده
This study presents population analyses of microbial communities inhabiting a site of extreme acid mine drainage (AMD) production. The site is the inactive underground Richmond mine at Iron Mountain, Calif., where the weathering of a massive sulfide ore body (mostly pyrite) produces solutions with pHs of approximately 0.5 to approximately 1.0. Here we used a suite of oligonucleotide probes, designed from molecular data recently acquired from the site, to analyze a number of microbial environments by fluorescent in situ hybridization. Microbial-community analyses were correlated with geochemical and mineralogical data from those environments. The environments investigated were within the ore body and thus at the site of pyrite dissolution, as opposed to environments that occur downstream of the dissolution. Few organism types, as defined by the specificities of the oligonucleotide probes, dominated the microbial communities. The majority of the dominant organisms detected were newly discovered or organisms only recently associated with acid-leaching environments. "Ferroplasma" spp. were detected in many of the communities and were particularly dominant in environments of lowest pH and highest ionic strength. Leptospirillum spp. were also detected in many slime and pyrite-dominated environments. In samples of an unusual subaerial slime, a new uncultured Leptospirillum sp. dominated. Sulfobacillus spp. were detected as a prominent inhabitant in warmer ( approximately 43 degrees C) environments. The information gathered here is critical for determining organisms important to AMD production at Iron Mountain and for directing future studies of this process. The findings presented here also have relevance to the microbiology of industrial bioleaching and to the understanding of geochemical iron and sulfur cycles.
منابع مشابه
Microbial communities in acid mine drainage.
The dissolution of sulfide minerals such as pyrite (FeS2), arsenopyrite (FeAsS), chalcopyrite (CuFeS2), sphalerite (ZnS), and marcasite (FeS2) yields hot, sulfuric acid-rich solutions that contain high concentrations of toxic metals. In locations where access of oxidants to sulfide mineral surfaces is increased by mining, the resulting acid mine drainage (AMD) may contaminate surrounding ecosys...
متن کاملMicrobial diversity and metabolic networks in acid mine drainage habitats
Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in div...
متن کاملMicrobial Diversity and Community Assembly across Environmental Gradients in Acid Mine Drainage
Microorganisms play an important role in weathering sulfide minerals worldwide and thrive in metal-rich and extremely acidic environments in acid mine drainage (AMD). Advanced molecular methods provide in-depth information on the microbial diversity and community dynamics in the AMD-generating environment. Although the diversity is relatively low and in general inversely correlated with the aci...
متن کاملLimnol. Oceanogr., 44(3, part 2), 1999, 804–809
St. Kevin Gulch, a headwater stream of the Rocky Mountains of Colorado, receives acid mine drainage that maintains low pH, high concentrations of heavy metals, and high rates of metal hydroxide deposition. An acidtolerant alga, Ulothrix sp., is present below the source of mine drainage in St. Kevin Gulch, but its biomass is limited by the deposition rates of iron hydroxides, which are especiall...
متن کاملMagnetic Nano mineral and acid mine drainage interaction: An experimental study
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 11 شماره
صفحات -
تاریخ انتشار 2000